top of page

Beregning af Gini-koefficient

 

Data til beregning af gini-koefficienten kan findes flere steder. Et oplagt sted er statistikbanken.dk under indkomster, fx INDKP105 (indkomst før skat) eller INDKP106 (disponibel indkomst). Data for USA kan findes her: Indkomstfordeling for husstande i USA fra 1967 til 2015.

 

De valgte data bør tilpasses så de ligner de nedenstående data. Der skal være indkomstintervaller opgjort i antal personer i gruppen og det samlede indkomstbeløb i gruppen.

Gini-koefficient1.jpg

Man starter med at finde summen af både antal personer og indkomstbeløb.

Gini-koefficient2.jpg

Herefter beregnes procentandelen (dog som decimalbrøk) af hvert datapunkt i forhold til den tidligere beregnede sum. Vi bruger dollartegn ($) til at låse vores sum-række så den ikke ændres når vi kopierer formelen. Formelen for procentandelen af antal personer i indkomstintervallet under 100.000 kr., i forhold til det samlede antal personer, bliver: =B4/B$10 Den kopieres til alle felter under procent personer og procent indkomst.

Gini-koefficient3.jpg

Så beregnes de akkumulerede procenter af både personer og indkomster. Formålet med dette er at få koordinater til at tegne en Lorenz-kurve i et koordinatsystem. Vælg feltet i den laveste indkomst kategori (her under 100.000 kr.) og akkumulerede personer og indtast følgende formel: =SUM(D$4:D4) og kopier den til alle felter under akkumulerede personer og indkomster. Bemærk dollartegnet ($), der låser rækken med den laveste indkomst kategori (her under 100.000 kr.).

Gini-koefficient4.jpg

Derudover indsættes øverst et nul under akkumulerede personer og indkomster. Så har vi koordinaterne til vores Lorenz-kurve.

Gini-koefficient5.jpg

Marker alle felterne med de koordinater vi skal bruge.

Gini-koefficient6.jpg

Og indsæt et punktdiagram.

Gini-koefficient7.jpg

Tilføj en tendenslinje til punktdiagrammet.

Gini-koefficient8.jpg

Vælg polynomisk og vælg hvilken grad polynomiet skal have. Brug gerne 2, som er standard. Dvs. en andengradsligning.

Gini-koefficient9.jpg

Vælg Vis ligning i diagram og vælg Vis R-kvadreret værdi i diagram.

Gini-koefficient10.jpg

Så har du en Lorenz-kurve over dine data. Din R2-værdi, fortæller hvor godt den passer med dine punkter og din ligning skal du bruge til at beregne Gini-koefficienten.

Gini-koefficient11.jpg

På nedenstående figur kan du se hvordan Gini-koefficienten er defineret. A er arealet mellem din Lorenz-kurve og en 45-graders vinkel linje, der angiver fuldstændig lighed, og skærer dit koordinatsystem i to dele. B angiver arealet under Lorenz-kurven. Gini-koefficienten er lig med A/(A+B). Dvs. A som en andel af A+B.

Gini-koefficient12.jpg

Vi ved at A+B=½ fordi A+B udgør en trekant, der udgør halvdelen af et kvadrat på 1x1.

 

Da Gini-koefficienten er defineret som A/(A+B) kan vi udlede at:

 

 

A+B=½

 

Gini=A/(1/2)=2A  

 

A=½-B

 

Gini=2(½-B)=1-2B

 

Dermed kan vi beregne Gini-koefficienten ved at beregne B og indsætte den I formelen: 1-2B

 

 

Vi beregner B ved at beregne integralet for Lorenz-kurven fra 0 til 1. Vi bruger formelen for vores Lorenz-kurve, som vi fandt før. y = 0,4993x2 + 0,4614x + 0,0152

Gini-koefficientformel1.jpg

Dette kan fx beregnes vha. følgende webside: https://www.symbolab.com/solver/definite-integral-calculator

 

Husk at ændre formel så den passer til websiden, bl.a. med engelsk komma.

Resultatet giver at B=0,41233 og dette indsættes i Gini=1-2B, som giver 0,17534. Vores Gini-koefficient er dermed, ud fra de brugte data, ca. 0,175.

    ©2019 by Samfundsfagguide.

    bottom of page